AP® Physics C: Electricity and Magnetism Cheat Sheet

Team English - Examples.com
Last Updated: September 23, 2024

Master the essential concepts of AP Physics C: Electricity and Magnetism with this comprehensive cheat sheet, covering key formulas, laws, and circuit principles.

Unit 1: Electrostatics

  • Law of Conservation of Charge:
    • Charge cannot be created or destroyed, only transferred.
  • Conductors:
    • Charge distributes evenly on the surface, does not hold inside.
    • Inside has zero net charge.
  • Insulator:
    • Charge does not distribute evenly, holds charge in one spot.
  • Coulomb’s Law:
    • F_e = k \frac{|q_1 q_2|}{r^2}
    • Positive F_e​: repel, Negative F_e​: attract
  • Electric Field:
    • E = \frac{F_e}{q}
    • E = k \frac{q}{r^2}​ for a point charge.
  • Gauss’s Law:
    • \oint \vec{E} \cdot d\vec{A} = \frac{Q_{\text{enc}}}{\epsilon_0}
  • Electric Potential Energy:
    • \frac{q_1 q_2}{r}
  • Electric Potential:
    • V = \frac{U}{q} = k \frac{q}{r}
  • Potential Difference (Voltage):
    • \Delta V = -\int \vec{E} \cdot d\vec{s}
  • Equipotential Surfaces:
    • Surfaces where the potential is constant, \vec{E} is perpendicular to equipotential surfaces.

Unit 2: Conductors, Capacitors, & Dielectrics

  • Capacitance:
    • C = \frac{Q}{V}
    • Units: Farads (F)
  • Parallel Plate Capacitor:
    • C = \frac{\epsilon_0 A}{d}
  • Capacitors in Series:
    • \frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots
  • Capacitors in Parallel:
    • C_{\text{eq}} = C_1 + C_2 + \cdots
  • Energy Stored in Capacitor:
    • U = \frac{1}{2} CV^2
  • Dielectrics:
    • Increases capacitance by a factor K: C′=KC
  • Electric Field in Dielectrics:
    • E = \frac{E_0}{K}
  • Capacitance with Dielectric:
    • C = \frac{K \epsilon_0 A}{d}
    • U = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} CV^2

Unit 3: Electric Circuits

  • Current:
    • I = \frac{dQ}{dt}
    • I = \frac{V}{R}​ (Ohm’s Law)
  • Resistance:
    • R = \frac{\rho L}{A}
    • \rho = resistivity, L = length, A = area
  • Ohm’s Law:
    • V = IR
  • Power:
    • P = IV = I^2 R = \frac{V^2}{R}
  • Kirchhoff’s Laws:
    • Junction Rule: \sum I_{\text{in}} = \sum I_{\text{out}}
    • Loop Rule: \sum \Delta V = 0
  • Resistors in Series:
    • R_{\text{eq}} = R_1 + R_2 + \cdots
  • Resistors in Parallel:
    • \frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots
  • RC Circuits:
    • Charging: q(t) = Q_{\text{max}} \left( 1 - e^{-t/RC} \right)
    • Discharging: q(t) = Q_{\text{max}} e^{-t/RC}

Unit 4: Magnetic Fields

  • Magnetic Force on a Moving Charge:
    • F_B = qvB \sin \theta
    • Right-hand rule: Thumb (v), Fingers (B), Palm (Force).
  • Magnetic Force on a Current-Carrying Wire:
    • F_B = ILB \sin \theta
  • Biot-Savart Law:
    • d\vec{B} = \frac{\mu_0 I}{4 \pi} \frac{d\vec{l} \times \hat{r}}{r^2}
  • Ampère’s Law:
    • \oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{enc}}
  • Magnetic Flux:
    • \Phi_B = \vec{B} \cdot \vec{A} = BA \cos \theta
  • Torque on a Loop:
    • \tau = NIAB \sin \theta

Unit 5: Electromagnetism

  • Faraday’s Law of Induction:
    • \mathcal{E} = -\frac{d\Phi_B}{dt}
    • Induced emf opposes the change in magnetic flux (Lenz’s Law).
  • Inductance:
    • V = L \frac{dI}{dt}
    • L = \frac{\mu_0 N^2 A}{l}
  • Inductors in Circuits:
    • RL Circuit (Charging): I(t) = \frac{\mathcal{E}}{R} \left( 1 - e^{-t/\tau} \right)
    • RL Circuit (Discharging): I(t) = I_0 e^{-t/\tau}
    • Time constant \tau = \frac{L}{R}
  • LC Oscillations:
    • \omega_0 = \frac{1}{\sqrt{LC}}
    • f_0 = \frac{1}{2\pi\sqrt{LC}}
  • Transformers:
    • \frac{V_s}{V_p} = \frac{N_s}{N_p}
    • \frac{I_s}{I_p} = \frac{N_p}{N_s}

FRQ Tips

  • Show Your Work: Detailed steps can earn partial credit.
  • Use Units Consistently: Always include units in your calculations and final answers.
  • Apply Right-Hand Rules: Essential for magnetic force and field direction.
  • Label Diagrams: Clearly label all forces, fields, and relevant quantities.
  • Think Symmetrically: Use symmetry in charge distributions and fields to simplify problems.