1. Home
  2. AP Physics C Electricity And Magnetism
  3. AP Physics C Electricity And Magnetism Cheat Sheet

AP® Physics C: Electricity and Magnetism Cheat Sheet

Master the essential concepts of AP Physics C: Electricity and Magnetism with this comprehensive cheat sheet, covering key formulas, laws, and circuit principles.

Unit 1: Electrostatics

  • Law of Conservation of Charge:
    • Charge cannot be created or destroyed, only transferred.
  • Conductors:
    • Charge distributes evenly on the surface, does not hold inside.
    • Inside has zero net charge.
  • Insulator:
    • Charge does not distribute evenly, holds charge in one spot.
  • Coulomb’s Law:
    • \(F_e = k \frac{|q_1 q_2|}{r^2}\)
    • Positive \(F_e\)​: repel, Negative \(F_e\)​: attract
  • Electric Field:
    • \(E = \frac{F_e}{q}\)
    • \(E = k \frac{q}{r^2}\)​ for a point charge.
  • Gauss’s Law:
    • \(\oint \vec{E} \cdot d\vec{A} = \frac{Q_{\text{enc}}}{\epsilon_0}\)
  • Electric Potential Energy:
    • \(\frac{q_1 q_2}{r}\)
  • Electric Potential:
    • \(V = \frac{U}{q} = k \frac{q}{r}\)
  • Potential Difference (Voltage):
    • \(\Delta V = -\int \vec{E} \cdot d\vec{s}\)
  • Equipotential Surfaces:
    • Surfaces where the potential is constant, \(\vec{E}\) is perpendicular to equipotential surfaces.

Unit 2: Conductors, Capacitors, & Dielectrics

  • Capacitance:
    • \(C = \frac{Q}{V}\)
    • Units: Farads (F)
  • Parallel Plate Capacitor:
    • \(C = \frac{\epsilon_0 A}{d}\)
  • Capacitors in Series:
    • \(\frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots\)
  • Capacitors in Parallel:
    • \(C_{\text{eq}} = C_1 + C_2 + \cdots\)
  • Energy Stored in Capacitor:
    • \(U = \frac{1}{2} CV^2\)
  • Dielectrics:
    • Increases capacitance by a factor K: C′=KC
  • Electric Field in Dielectrics:
    • \(E = \frac{E_0}{K}\)
  • Capacitance with Dielectric:
    • \(C = \frac{K \epsilon_0 A}{d}\)
    • \(U = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} CV^2\)

Unit 3: Electric Circuits

  • Current:
    • \(I = \frac{dQ}{dt}\)
    • \(I = \frac{V}{R}\)​ (Ohm’s Law)
  • Resistance:
    • \(R = \frac{\rho L}{A}\)
    • \(\rho\) = resistivity, L = length, A = area
  • Ohm’s Law:
    • V = IR
  • Power:
    • \(P = IV = I^2 R = \frac{V^2}{R}\)
  • Kirchhoff’s Laws:
    • Junction Rule: \(\sum I_{\text{in}} = \sum I_{\text{out}}\)
    • Loop Rule: \(\sum \Delta V = 0\)
  • Resistors in Series:
    • \(R_{\text{eq}} = R_1 + R_2 + \cdots\)
  • Resistors in Parallel:
    • \(\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots\)
  • RC Circuits:
    • Charging: \(q(t) = Q_{\text{max}} \left( 1 – e^{-t/RC} \right)\)
    • Discharging: \(q(t) = Q_{\text{max}} e^{-t/RC}\)

Unit 4: Magnetic Fields

  • Magnetic Force on a Moving Charge:
    • \(F_B = qvB \sin \theta\)
    • Right-hand rule: Thumb (v), Fingers (B), Palm (Force).
  • Magnetic Force on a Current-Carrying Wire:
    • \(F_B = ILB \sin \theta\)
  • Biot-Savart Law:
    • \(d\vec{B} = \frac{\mu_0 I}{4 \pi} \frac{d\vec{l} \times \hat{r}}{r^2}\)
  • Ampère’s Law:
    • \(\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{enc}}\)
  • Magnetic Flux:
    • \(\Phi_B = \vec{B} \cdot \vec{A} = BA \cos \theta\)
  • Torque on a Loop:
    • \(\tau = NIAB \sin \theta\)

Unit 5: Electromagnetism

  • Faraday’s Law of Induction:
    • \(\mathcal{E} = -\frac{d\Phi_B}{dt}\)
    • Induced emf opposes the change in magnetic flux (Lenz’s Law).
  • Inductance:
    • \(V = L \frac{dI}{dt}\)
    • \(L = \frac{\mu_0 N^2 A}{l}\)
  • Inductors in Circuits:
    • RL Circuit (Charging): \(I(t) = \frac{\mathcal{E}}{R} \left( 1 – e^{-t/\tau} \right)\)
    • RL Circuit (Discharging): \(I(t) = I_0 e^{-t/\tau}\)
    • Time constant \(\tau = \frac{L}{R}\)
  • LC Oscillations:
    • \(\omega_0 = \frac{1}{\sqrt{LC}}\)
    • \(f_0 = \frac{1}{2\pi\sqrt{LC}}\)
  • Transformers:
    • \(\frac{V_s}{V_p} = \frac{N_s}{N_p}\)
    • \(\frac{I_s}{I_p} = \frac{N_p}{N_s}\)

FRQ Tips

  • Show Your Work: Detailed steps can earn partial credit.
  • Use Units Consistently: Always include units in your calculations and final answers.
  • Apply Right-Hand Rules: Essential for magnetic force and field direction.
  • Label Diagrams: Clearly label all forces, fields, and relevant quantities.
  • Think Symmetrically: Use symmetry in charge distributions and fields to simplify problems.