AP® Physics C: Mechanics Cheat Sheet

Team English - Examples.com
Last Updated: September 23, 2024

Prepare for AP Physics C: Mechanics with this detailed cheat sheet, covering kinematics, Newton’s laws, energy, momentum, rotation, oscillations, and gravitation. Ideal for quick review before exams or during problem-solving.

Download AP Physics C: Mechanics Cheat Sheet – Pdf

Unit 1: Kinematics

  • Kinematics in One Dimension:
    • Displacement: \Delta x = x_f - x_i
    • Velocity: v = \frac{dx}{dt}
    • Acceleration: a = \frac{dv}{dt}
    • Equations of Motion:
      • v = v_0 + at
      • x = x_0 + v_0t + \frac{1}{2}at^2
      • v^2 = v_0^2 + 2a(x - x_0)
  • Kinematics in Two Dimensions:
    • Position Vector: \vec{r} = x\hat{i} + y\hat{j}
    • Velocity Vector: \vec{v} = \frac{d\vec{r}}{dt} = v_x\hat{i} + v_y\hat{j}
    • Projectile Motion:
      • x(t) = v_{0x} t
      • y(t) = v_{0y} t - \frac{1}{2} g t^2
    • Relative Velocity: \vec{v}_{AB} = \vec{v}_A - \vec{v}_B

Unit 2: Newton’s Laws of Motion

  • Newton’s First and Second Law:
    • First Law (Inertia): \vec{F}_{\text{net}} = 0 \Rightarrow \text{constant velocity}
    • Second Law: \vec{F}_{\text{net}} = m\vec{a}
    • Weight: W = mg
  • Circular Motion:
    • Centripetal Acceleration: a_c = \frac{v^2}{r}
    • Centripetal Force: F_c = m \frac{v^2}{r}
    • Uniform Circular Motion: Constant speed, changing velocity direction.
  • Newton’s Third Law:
    • Action-Reaction: For every action, there is an equal and opposite reaction, \vec{F}_{AB} = -\vec{F}_{BA}​.

Unit 3: Work, Energy, and Power

  • Work-Energy Theorem:
    • W = \Delta K = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2
  • Forces and Potential Energy:
    • Gravitational Potential Energy: U_g = mgh
    • Elastic Potential Energy: U_s = \frac{1}{2} kx^2
    • Conservative Forces: \vec{F} = -\frac{dU}{dx}
  • Conservation of Energy:
    • Mechanical Energy: E = K + U
    • Conservation: E_i = E_f​ (No non-conservative forces)
  • Power:
    • Power: P = \frac{dW}{dt} = Fv
    • Units: Watts (W)

Unit 4: Systems of Particles and Linear Momentum

  • Center of Mass:
    • Center of Mass (Discrete Particles): \vec{r}_{\text{cm}} = \frac{1}{M} \sum m_i \vec{r}_i
  • Impulse and Momentum:
    • Momentum: \vec{p} = m\vec{v}
    • Impulse: \vec{J} = \Delta \vec{p} = \int \vec{F} dt
    • Impulse-Momentum Theorem: \vec{J} = \Delta \vec{p}
  • Conservation of Linear Momentum:
    • Elastic Collisions: \vec{p}_{\text{initial}} = \vec{p}_{\text{final}}​, K_{\text{initial}} = K_{\text{final}}
    • Inelastic Collisions: \vec{p}_{\text{initial}} = \vec{p}_{\text{final}}​, K_{\text{initial}} > K_{\text{final}}

Unit 5: Rotation

  • Torque and Rotational Statics:
    • Torque: \tau = rF \sin \theta
    • Rotational Equilibrium: \sum \tau = 0
  • Rotational Kinematics:
    • Angular Displacement: \theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2
    • Angular Velocity: \omega = \omega_0 + \alpha t
    • Angular Acceleration: \alpha = \frac{d\omega}{dt}
  • Rotational Dynamics and Energy:
    • Rotational Inertia: I = \sum m_i r_i^2
    • Newton’s Second Law for Rotation: \tau = I\alpha
    • Rotational Kinetic Energy: K = \frac{1}{2} I \omega^2
  • Angular Momentum and Its Conservation:
    • Angular Momentum: L = I \omega
    • Conservation of Angular Momentum: \vec{L}_{\text{initial}} = \vec{L}_{\text{final}}

Unit 6: Oscillations

  • Simple Harmonic Motion (SHM):
    • Position: x(t) = A \cos(\omega t + \phi)
    • Velocity: v(t) = -A \omega \sin(\omega t + \phi)
    • Acceleration: a(t) = -A \omega^2 \cos(\omega t + \phi)
  • Springs:
    • Hooke’s Law: F_s = -kx
    • Spring Constant: k, \omega = \sqrt{\frac{k}{m}}
  • Pendulums:
    • Simple Pendulum: T = 2\pi \sqrt{\frac{L}{g}}
    • Angular Frequency: \omega = \sqrt{\frac{g}{L}}

Unit 7: Gravitation

  • Gravitational Forces:
    • Newton’s Law of Universal Gravitation: F_g = G \frac{m_1 m_2}{r^2}
    • G = 6.674 \times 10^{-11} \, \text{Nm}^2/\text{kg}^2
  • Gravitational Potential Energy:
    • U_g = -G \frac{m_1 m_2}{r}
  • Orbits of Planets and Satellites:
    • Orbital Speed: v = \sqrt{\frac{GM}{r}}
    • Orbital Period: T = 2\pi \sqrt{\frac{r^3}{GM}}​​ (Kepler’s Third Law)

FRQ Tips

  • Start with Free-Body Diagrams: Helps visualize forces and motion.
  • Use Energy Methods: Especially for conservative systems.
  • Check Units: Ensure consistency across all calculations.
  • Apply Conservation Laws: Momentum, energy, and angular momentum are key.
  • Explain All Steps: Clear reasoning can earn partial credit.