1. Home
  2. AP Physics C Mechanics
  3. AP Physics C Mechanics Cheat Sheet

AP® Physics C: Mechanics Cheat Sheet

Prepare for AP Physics C: Mechanics with this detailed cheat sheet, covering kinematics, Newton’s laws, energy, momentum, rotation, oscillations, and gravitation. Ideal for quick review before exams or during problem-solving.

Download AP Physics C: Mechanics Cheat Sheet – Pdf

Unit 1: Kinematics

  • Kinematics in One Dimension:
    • Displacement: \(\Delta x = x_f – x_i\)
    • Velocity: \(v = \frac{dx}{dt}\)
    • Acceleration: \(a = \frac{dv}{dt}\)
    • Equations of Motion:
      • \(v = v_0 + at\)
      • \(x = x_0 + v_0t + \frac{1}{2}at^2\)
      • \(v^2 = v_0^2 + 2a(x – x_0)\)
  • Kinematics in Two Dimensions:
    • Position Vector: \(\vec{r} = x\hat{i} + y\hat{j}\)
    • Velocity Vector: \(\vec{v} = \frac{d\vec{r}}{dt} = v_x\hat{i} + v_y\hat{j}\)
    • Projectile Motion:
      • \(x(t) = v_{0x} t\)
      • \(y(t) = v_{0y} t – \frac{1}{2} g t^2\)
    • Relative Velocity: \(\vec{v}_{AB} = \vec{v}_A – \vec{v}_B\)

Unit 2: Newton’s Laws of Motion

  • Newton’s First and Second Law:
    • First Law (Inertia): \(\vec{F}_{\text{net}} = 0 \Rightarrow \text{constant velocity}\)
    • Second Law: \(\vec{F}_{\text{net}} = m\vec{a}\)
    • Weight: W = mg
  • Circular Motion:
    • Centripetal Acceleration: \(a_c = \frac{v^2}{r}\)​
    • Centripetal Force: \(F_c = m \frac{v^2}{r}\)
    • Uniform Circular Motion: Constant speed, changing velocity direction.
  • Newton’s Third Law:
    • Action-Reaction: For every action, there is an equal and opposite reaction, \(\vec{F}_{AB} = -\vec{F}_{BA}\)​.

Unit 3: Work, Energy, and Power

  • Work-Energy Theorem:
    • \(W = \Delta K = \frac{1}{2}mv_f^2 – \frac{1}{2}mv_i^2\)
  • Forces and Potential Energy:
    • Gravitational Potential Energy: \(U_g = mgh\)
    • Elastic Potential Energy: \(U_s = \frac{1}{2} kx^2\)
    • Conservative Forces: \(\vec{F} = -\frac{dU}{dx}\)
  • Conservation of Energy:
    • Mechanical Energy: E = K + U
    • Conservation: \(E_i = E_f\)​ (No non-conservative forces)
  • Power:
    • Power: \(P = \frac{dW}{dt} = Fv\)
    • Units: Watts (W)

Unit 4: Systems of Particles and Linear Momentum

  • Center of Mass:
    • Center of Mass (Discrete Particles): \(\vec{r}_{\text{cm}} = \frac{1}{M} \sum m_i \vec{r}_i\)
  • Impulse and Momentum:
    • Momentum: \(\vec{p} = m\vec{v}\)
    • Impulse: \(\vec{J} = \Delta \vec{p} = \int \vec{F} dt\)
    • Impulse-Momentum Theorem: \(\vec{J} = \Delta \vec{p}\)
  • Conservation of Linear Momentum:
    • Elastic Collisions: \(\vec{p}_{\text{initial}} = \vec{p}_{\text{final}}​, K_{\text{initial}} = K_{\text{final}}\)
    • Inelastic Collisions: \(\vec{p}_{\text{initial}} = \vec{p}_{\text{final}}\)​, \(K_{\text{initial}} > K_{\text{final}}\)

Unit 5: Rotation

  • Torque and Rotational Statics:
    • Torque: \(\tau = rF \sin \theta\)
    • Rotational Equilibrium: \(\sum \tau = 0\)
  • Rotational Kinematics:
    • Angular Displacement: \(\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2\)
    • Angular Velocity: \(\omega = \omega_0 + \alpha t\)
    • Angular Acceleration: \(\alpha = \frac{d\omega}{dt}\)
  • Rotational Dynamics and Energy:
    • Rotational Inertia: \(I = \sum m_i r_i^2\)
    • Newton’s Second Law for Rotation: \(\tau = I\alpha\)
    • Rotational Kinetic Energy: \(K = \frac{1}{2} I \omega^2\)
  • Angular Momentum and Its Conservation:
    • Angular Momentum: \(L = I \omega\)
    • Conservation of Angular Momentum: \(\vec{L}_{\text{initial}} = \vec{L}_{\text{final}}\)

Unit 6: Oscillations

  • Simple Harmonic Motion (SHM):
    • Position: \(x(t) = A \cos(\omega t + \phi)\)
    • Velocity: \(v(t) = -A \omega \sin(\omega t + \phi)\)
    • Acceleration: \(a(t) = -A \omega^2 \cos(\omega t + \phi)\)
  • Springs:
    • Hooke’s Law: \(F_s = -kx\)
    • Spring Constant: k, \(\omega = \sqrt{\frac{k}{m}}\)
  • Pendulums:
    • Simple Pendulum: \(T = 2\pi \sqrt{\frac{L}{g}}\)
    • Angular Frequency: \(\omega = \sqrt{\frac{g}{L}}\)

Unit 7: Gravitation

  • Gravitational Forces:
    • Newton’s Law of Universal Gravitation: \(F_g = G \frac{m_1 m_2}{r^2}\)
    • \(G = 6.674 \times 10^{-11} \, \text{Nm}^2/\text{kg}^2\)
  • Gravitational Potential Energy:
    • \(U_g = -G \frac{m_1 m_2}{r}\)
  • Orbits of Planets and Satellites:
    • Orbital Speed: \(v = \sqrt{\frac{GM}{r}}\)
    • Orbital Period: \(T = 2\pi \sqrt{\frac{r^3}{GM}}\)​​ (Kepler’s Third Law)

FRQ Tips

  • Start with Free-Body Diagrams: Helps visualize forces and motion.
  • Use Energy Methods: Especially for conservative systems.
  • Check Units: Ensure consistency across all calculations.
  • Apply Conservation Laws: Momentum, energy, and angular momentum are key.
  • Explain All Steps: Clear reasoning can earn partial credit.